DP-100J関連問題資料 資格取得

数年間でのIT認定試験資料向けの研究分析によって、我々社はこの業界のリーダーにだんだんなっています。弊社のチームは開発される問題集はとても全面で、受験生をMicrosoft DP-100J関連問題資料試験に合格するのを良く助けます。周知のように、Microsoft DP-100J関連問題資料資格認定があれば、IT業界での発展はより簡単になります。 弊社の商品が好きなのは弊社のたのしいです。Shobhadoshiはきみの貴重な時間を節約するだけでなく、 安心で順調に試験に合格するのを保証します。 躊躇わなくて、Shobhadoshiサイト情報を早く了解して、あなたに試験合格を助かってあげますようにお願いいたします。

Microsoft Azure DP-100J Shobhadoshiを選んだら、成功への扉を開きます。

Microsoft Azure DP-100J関連問題資料 - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版) 編成チュートリアルは授業コース、実践検定、試験エンジンと一部の無料なPDFダウンロードを含めています。 したがって、ShobhadoshiのDP-100J 対応受験問題集も絶えずに更新されています。それに、Shobhadoshiの教材を購入すれば、Shobhadoshiは一年間の無料アップデート・サービスを提供してあげます。

それも我々が全てのお客様に対する約束です。あなたはこのような人々の一人ですか。さまざまな資料とトレーニング授業を前にして、どれを選ぶか本当に困っているのです。

Microsoft DP-100J関連問題資料 - 「信仰は偉大な感情で、創造の力になれます。

常々、時間とお金ばかり効果がないです。正しい方法は大切です。我々Shobhadoshiは一番効果的な方法を探してあなたにMicrosoftのDP-100J関連問題資料試験に合格させます。弊社のMicrosoftのDP-100J関連問題資料ソフトを購入するのを決めるとき、我々は各方面であなたに保障を提供します。購入した前の無料の試み、購入するときのお支払いへの保障、購入した一年間の無料更新MicrosoftのDP-100J関連問題資料試験に失敗した全額での返金…これらは我々のお客様への承諾です。

試験に合格してから、あなたのキャリアは美しい時期を迎えるようになります。偉大な事業を実現するために信心を持つ必要があります。

DP-100J PDF DEMO:

QUESTION NO: 1
Azure Machine Learning
Studioで新しい実験を作成します。多くの列に欠損値がある小さなデータセットがあります
。データでは、各列に予測変数を適用する必要はありません。欠落データの処理モジュール
を使用して、欠落データを処理する予定です。
データクリーニング方法を選択する必要があります。
どの方法を使用する必要がありますか?
A. 確率的PACを使用して置換
B. 正規化
C. MICEを使用して交換
D. 合成マイノリティ
Answer: A

QUESTION NO: 2
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります

このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data

QUESTION NO: 3
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

QUESTION NO: 4
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

QUESTION NO: 5
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/

試験が更新されているうちに、我々はMicrosoftのIIBA ECBA試験の資料を更新し続けています。 そして、ソフトウェア版のHP HPE7-A08問題集は実際試験の雰囲気を感じさせることができます。 Microsoft GH-500 - 自分の幸せは自分で作るものだと思われます。 ShobhadoshiのISTQB CTAL-TM_001試験参考書は他のISTQB CTAL-TM_001試験に関連するする参考書よりずっと良いです。 あなたは弊社の高品質Microsoft Google Professional-Cloud-Database-Engineer試験資料を利用して、一回に試験に合格します。

Updated: May 28, 2022

DP-100J関連問題資料 & DP-100J受験対策 - Microsoft DP-100J受験資格

PDF問題と解答

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2025-06-13
問題と解答:全 479
Microsoft DP-100J 復習範囲

  ダウンロード


 

模擬試験

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2025-06-13
問題と解答:全 479
Microsoft DP-100J 資格難易度

  ダウンロード


 

オンライン版

試験コード:DP-100J
試験名称:Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)
最近更新時間:2025-06-13
問題と解答:全 479
Microsoft DP-100J 対応資料

  ダウンロード


 

DP-100J リンクグローバル

 | Shobhadoshi braindumps | Shobhadoshi real | Shobhadoshi topic | Shobhadoshi study | Shobhadoshi question sitemap