只要試題一更新,Shobhadoshi馬上把最新版的資料發送給你。這樣就可以保證你隨時擁有最新版的資料。Shobhadoshi不僅可以幫助你通過考試,還可以幫助你學習最新的知識。 將Shobhadoshi的產品加入購物車吧!你將以100%的信心去參加考試,一次性通過Google Professional-Data-Engineer考題寶典 認證考試,你將不會後悔你的選擇的。 快點購買Shobhadoshi的Professional-Data-Engineer考題寶典考古題吧。
您準備好Google Professional-Data-Engineer - Google Certified Professional Data Engineer Exam考題寶典考試嗎?是否了解最新的認證考試資訊呢?無論是您需要準備什么IT認證考試,Shobhadoshi都能幫助您成功通過首次严格的考试。 我們Shobhadoshi網站完全具備資源和Google的Professional-Data-Engineer 題庫資訊考試的問題,它也包含了 Google的Professional-Data-Engineer 題庫資訊考試的實踐檢驗,測試轉儲,它可以幫助候選人為準備考試、通過考試的,為你的訓練提出了許多方便,你可以下載部分試用考題及答案作為嘗試,Shobhadoshi Google的Professional-Data-Engineer 題庫資訊考試時間內沒有絕對的方式來傳遞,Shobhadoshi提供真實、全面的考試試題及答案,隨著我們獨家線上的Google的Professional-Data-Engineer 題庫資訊考試培訓資料,你會很容易的通過Google的Professional-Data-Engineer 題庫資訊考試,本站保證通過率100%
只要你需要考試,我們就可以隨時更新Google Professional-Data-Engineer考題寶典認證考試的培訓資料來滿足你的考試需求。Shobhadoshi的培訓資料包含Google Professional-Data-Engineer考題寶典考試的練習題和答案,能100%確保你通過Google Professional-Data-Engineer考題寶典考試。有了我們為你提供的培訓資料,你可以為你參加考試做更好的準備,而且我們還會為你提供一年的免費的更新服務。
為了對你們有更多的幫助,我們Shobhadoshi Google的Professional-Data-Engineer考題寶典可在互聯網上消除這些緊張的情緒,Professional-Data-Engineer考題寶典學習材料範圍從官方Google的Professional-Data-Engineer考題寶典認證培訓課程Google的Professional-Data-Engineer考題寶典自學培訓指南,Shobhadoshi的Professional-Data-Engineer考題寶典考試和實踐,Professional-Data-Engineer考題寶典線上考試,Professional-Data-Engineer考題寶典學習指南, 都可在網上。我們Shobhadoshi設計的Professional-Data-Engineer考題寶典模擬培訓包,可以幫助你毫不費力的通過考試,現在你不要花太多的時間和金錢,只要你擁有了本站的學習資料,只要按照指示,關注於考試的問題,你將很容易的獲得認證。
要做就做一個勇往直前的人,那樣的人生才有意義。人生舞臺的大幕隨時都可能拉開,關鍵是你願意表演,還是選擇躲避,能把在面前行走的機會抓住的人,十有八九都是成功的。
QUESTION NO: 1
You have an Apache Kafka Cluster on-prem with topics containing web application logs. You need to replicate the data to Google Cloud for analysis in BigQuery and Cloud Storage. The preferred replication method is mirroring to avoid deployment of Kafka Connect plugins.
What should you do?
A. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a Sink connector. Use a Dataflow job to read fron PubSub and write to GCS.
B. Deploy a Kafka cluster on GCE VM Instances. Configure your on-prem cluster to mirror your topics to the cluster running in GCE. Use a Dataproc cluster or Dataflow job to read from Kafka and write to
GCS.
C. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a
Source connector. Use a Dataflow job to read fron PubSub and write to GCS.
D. Deploy a Kafka cluster on GCE VM Instances with the PubSub Kafka connector configured as a Sink connector. Use a Dataproc cluster or Dataflow job to read from Kafka and write to GCS.
Answer: B
QUESTION NO: 2
Which Google Cloud Platform service is an alternative to Hadoop with Hive?
A. Cloud Datastore
B. Cloud Bigtable
C. BigQuery
D. Cloud Dataflow
Answer: C
Explanation
Apache Hive is a data warehouse software project built on top of Apache Hadoop for providing data summarization, query, and analysis.
Google BigQuery is an enterprise data warehouse.
Reference: https://en.wikipedia.org/wiki/Apache_Hive
QUESTION NO: 3
For the best possible performance, what is the recommended zone for your Compute Engine instance and Cloud Bigtable instance?
A. Have both the Compute Engine instance and the Cloud Bigtable instance to be in different zones.
B. Have the Compute Engine instance in the furthest zone from the Cloud Bigtable instance.
C. Have the Cloud Bigtable instance to be in the same zone as all of the consumers of your data.
D. Have both the Compute Engine instance and the Cloud Bigtable instance to be in the same zone.
Answer: D
Explanation
It is recommended to create your Compute Engine instance in the same zone as your Cloud Bigtable instance for the best possible performance, If it's not possible to create a instance in the same zone, you should create your instance in another zone within the same region. For example, if your Cloud
Bigtable instance is located in us-central1-b, you could create your instance in us-central1-f. This change may result in several milliseconds of additional latency for each Cloud Bigtable request.
It is recommended to avoid creating your Compute Engine instance in a different region from your
Cloud Bigtable instance, which can add hundreds of milliseconds of latency to each Cloud Bigtable request.
Reference: https://cloud.google.com/bigtable/docs/creating-compute-instance
QUESTION NO: 4
You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?
A. Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.
B. In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.
C. In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.
D. Make a call to the Stackdriver API to list all logs, and apply an advanced filter.
Answer: C
QUESTION NO: 5
You need to create a near real-time inventory dashboard that reads the main inventory tables in your BigQuery data warehouse. Historical inventory data is stored as inventory balances by item and location. You have several thousand updates to inventory every hour. You want to maximize performance of the dashboard and ensure that the data is accurate. What should you do?
A. Use the BigQuery streaming the stream changes into a daily inventory movement table. Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.
B. Use the BigQuery bulk loader to batch load inventory changes into a daily inventory movement table.
Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.
C. Leverage BigQuery UPDATE statements to update the inventory balances as they are changing.
D. Partition the inventory balance table by item to reduce the amount of data scanned with each inventory update.
Answer: C
NICET ITFAS-Level-1 - 在這個人才濟濟的社會,人們不斷提高自己的知識想達到更高的水準,但是國家對尖端的IT人員需求量還在不斷擴大,國際上更是如此。 Nutanix NCP-US-6.5 - ”這是來自安西教練的一句大家都熟知的名言。 選擇Shobhadoshi Google的Microsoft SC-300-KR考試培訓資料是個不錯選擇,它會幫助我們順利通過考試,這也是通往成功的最佳捷徑,每個人都有可能成功,關鍵在於選擇。 Fortinet NSE7_OTS-7.2 - 這個考試的認證資格可以證明你擁有很高的技能。 Shobhadoshi的IT專家團隊利用他們的經驗和知識不斷的提升考試培訓材料的品質,來滿足每位考生的需求,保證考生第一次參加Google Cisco 300-745認證考試順利的通過,你們通過購買Shobhadoshi的產品總是能夠更快得到更新更準確的考試相關資訊,Shobhadoshi的產品的覆蓋面很大很廣,可以為很多參加IT認證考試的考生提供方便,而且準確率100%,能讓你安心的去參加考試,並通過獲得認證。
Updated: May 27, 2022
考試編碼:Professional-Data-Engineer
考試名稱:Google Certified Professional Data Engineer Exam
更新時間:2025-06-07
問題數量:380題
Google Professional-Data-Engineer 熱門考題
下載免費試用
考試編碼:Professional-Data-Engineer
考試名稱:Google Certified Professional Data Engineer Exam
更新時間:2025-06-07
問題數量:380題
Google 最新 Professional-Data-Engineer 考證
下載免費試用
考試編碼:Professional-Data-Engineer
考試名稱:Google Certified Professional Data Engineer Exam
更新時間:2025-06-07
問題數量:380題
Google Professional-Data-Engineer 學習指南
下載免費試用