選擇我們Shobhadoshi就是選擇成功!Shobhadoshi為你提供的Google Professional-Data-Engineer新版題庫上線 認證考試的練習題和答案能使你順利通過考試。Google Professional-Data-Engineer新版題庫上線 認證考試的考試之前的模擬考試時很有必要的,也是很有效的。如果你選擇了Shobhadoshi,你可以100%通過考試。 各行各業的人們都在為了將來能做出點什麼成績而努力。在IT行業工作的你肯定也在努力提高自己的技能吧。 如果你已經決定通過Google的Professional-Data-Engineer新版題庫上線考試,Shobhadoshi在這裏,可以幫助你實現你的目標,我們更懂得你需要通過你的Google的Professional-Data-Engineer新版題庫上線考試,我們承諾是為你高品質的考古題,科學的考試,過Shobhadoshi的Google的Professional-Data-Engineer新版題庫上線考試。
我們Shobhadoshi配置提供給你最優質的Google的Professional-Data-Engineer - Google Certified Professional Data Engineer Exam新版題庫上線考試考古題及答案,將你一步一步帶向成功,我們Shobhadoshi Google的Professional-Data-Engineer - Google Certified Professional Data Engineer Exam新版題庫上線考試認證資料絕對提供給你一個真實的考前準備,我們針對性很強,就如同為你量身定做一般,你一定會成為一個有實力的IT專家,我們Shobhadoshi Google的Professional-Data-Engineer - Google Certified Professional Data Engineer Exam新版題庫上線考試認證資料將是最適合你也是你最需要的培訓資料,趕緊註冊我們Shobhadoshi網站,相信你會有意外的收穫。 在這種情況下,如果一個資格都沒有就趕不上別人了。那麼,你決定參加哪個考試呢?Google的考試怎麼樣呢?比如像Professional-Data-Engineer 題庫更新認證考試這樣的考試。
我們Shobhadoshi全面提供Google的Professional-Data-Engineer新版題庫上線考試認證資料,為你提示成功。我們的培訓資料是由專家帶來的最新的研究材料,你總是得到最新的研究材料,保證你的成功會與我們Shobhadoshi同在,我們幫助你,你肯定從我們這裏得到最詳細最準確的考題及答案,我們培訓工具定期更新,不斷變化的考試目標。其實成功並不遠,你順著Shobhadoshi往下走,就一定能走向你專屬的成功之路。
在你還在猶豫選擇我們Shobhadoshi之前,你可以先嘗試在我們Shobhadoshi免費下載我們為你提供的關於Google Professional-Data-Engineer新版題庫上線認證考試的部分考題及答案。這樣,你就可以知道我們Shobhadoshi的可靠性。我們Shobhadoshi也會是你通過Google Professional-Data-Engineer新版題庫上線認證考試最好的選擇,我們Shobhadoshi是你通過Google Professional-Data-Engineer新版題庫上線認證考試最好的保證。你選擇了我們Shobhadoshi,就等於選擇了成功。
我們根據Google Professional-Data-Engineer新版題庫上線的考試科目的不斷變化,也會不斷的更新我們的培訓資料,會提供最新的考試內容。Shobhadoshi可以為你免費提供24小時線上客戶服務,如果你沒有通過Google Professional-Data-Engineer新版題庫上線的認證考試,我們會全額退款給您。
QUESTION NO: 1
You have an Apache Kafka Cluster on-prem with topics containing web application logs. You need to replicate the data to Google Cloud for analysis in BigQuery and Cloud Storage. The preferred replication method is mirroring to avoid deployment of Kafka Connect plugins.
What should you do?
A. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a Sink connector. Use a Dataflow job to read fron PubSub and write to GCS.
B. Deploy a Kafka cluster on GCE VM Instances. Configure your on-prem cluster to mirror your topics to the cluster running in GCE. Use a Dataproc cluster or Dataflow job to read from Kafka and write to
GCS.
C. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a
Source connector. Use a Dataflow job to read fron PubSub and write to GCS.
D. Deploy a Kafka cluster on GCE VM Instances with the PubSub Kafka connector configured as a Sink connector. Use a Dataproc cluster or Dataflow job to read from Kafka and write to GCS.
Answer: B
QUESTION NO: 2
Which Google Cloud Platform service is an alternative to Hadoop with Hive?
A. Cloud Datastore
B. Cloud Bigtable
C. BigQuery
D. Cloud Dataflow
Answer: C
Explanation
Apache Hive is a data warehouse software project built on top of Apache Hadoop for providing data summarization, query, and analysis.
Google BigQuery is an enterprise data warehouse.
Reference: https://en.wikipedia.org/wiki/Apache_Hive
QUESTION NO: 3
You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?
A. Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.
B. In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.
C. In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.
D. Make a call to the Stackdriver API to list all logs, and apply an advanced filter.
Answer: C
QUESTION NO: 4
You need to create a near real-time inventory dashboard that reads the main inventory tables in your BigQuery data warehouse. Historical inventory data is stored as inventory balances by item and location. You have several thousand updates to inventory every hour. You want to maximize performance of the dashboard and ensure that the data is accurate. What should you do?
A. Use the BigQuery streaming the stream changes into a daily inventory movement table. Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.
B. Use the BigQuery bulk loader to batch load inventory changes into a daily inventory movement table.
Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.
C. Leverage BigQuery UPDATE statements to update the inventory balances as they are changing.
D. Partition the inventory balance table by item to reduce the amount of data scanned with each inventory update.
Answer: C
QUESTION NO: 5
For the best possible performance, what is the recommended zone for your Compute Engine instance and Cloud Bigtable instance?
A. Have both the Compute Engine instance and the Cloud Bigtable instance to be in different zones.
B. Have the Compute Engine instance in the furthest zone from the Cloud Bigtable instance.
C. Have the Cloud Bigtable instance to be in the same zone as all of the consumers of your data.
D. Have both the Compute Engine instance and the Cloud Bigtable instance to be in the same zone.
Answer: D
Explanation
It is recommended to create your Compute Engine instance in the same zone as your Cloud Bigtable instance for the best possible performance, If it's not possible to create a instance in the same zone, you should create your instance in another zone within the same region. For example, if your Cloud
Bigtable instance is located in us-central1-b, you could create your instance in us-central1-f. This change may result in several milliseconds of additional latency for each Cloud Bigtable request.
It is recommended to avoid creating your Compute Engine instance in a different region from your
Cloud Bigtable instance, which can add hundreds of milliseconds of latency to each Cloud Bigtable request.
Reference: https://cloud.google.com/bigtable/docs/creating-compute-instance
你可以在網上免費下載Shobhadoshi為你提供的部分Google Huawei H20-713_V1.0的認證考試的練習題和答案作為嘗試。 Shobhadoshi為你提供的都是高品質的產品,可以讓你參加Google AFP CTP 認證考試之前做模擬考試,可以為你參加考試做最好的準備。 ISACA CGEIT - 只有掌握很全面的IT知識的IT人才會有資格去報名參加的考試。 GIAC GRTP - 如果你使用了Shobhadoshi提供的練習題做測試,你可以100%通過你第一次參加的IT認證考試。 Shobhadoshi為您提供的針對性培訓和高品質的練習題,是你第一次參加Google SAP C-FIORD-2502 認證考試最好的準備。
Updated: May 27, 2022
考試編碼:Professional-Data-Engineer
考試名稱:Google Certified Professional Data Engineer Exam
更新時間:2025-06-07
問題數量:380題
Google Professional-Data-Engineer 學習資料
下載免費試用
考試編碼:Professional-Data-Engineer
考試名稱:Google Certified Professional Data Engineer Exam
更新時間:2025-06-07
問題數量:380題
Google 最新 Professional-Data-Engineer 題庫資源
下載免費試用
考試編碼:Professional-Data-Engineer
考試名稱:Google Certified Professional Data Engineer Exam
更新時間:2025-06-07
問題數量:380題
Google Professional-Data-Engineer 題庫下載
下載免費試用